Agricultural and Biological Engineering # CAPSTONE/SENIOR DESIGN EXPERIENCE 2020 ## Monon High Bridge Trail: Slope Stabilization Matthew Baker (ENRE), Kayley Hodson (ENRE), and Qijue Chen (ENRE) ### 1. Problem Statement The current instability of the slope along the Monon Trail poses a risk to human safety and threatens the existence of the trail. There is an urgent need to prevent further expansion of the gully and stabilize the bank if the trail is to remain open to the public. ### 2. Background The Monon High Bridge Trail (Delphi, Indiana) follows an old railroad line as it runs along the banks of a local creek (Deer Creek). A portion of the bank has recently collapsed and is cutting into the trail (Fig. 2). Figure 1 Photos from the site taken at the Monon Trail Figure 2 Aerial map of site location along Deer Creek The depression that was formed is 60 feet tall from trail to streambed over a horizontal distance of 120 feet. The collapsed portion measures 30 feet at the trail in width and widens at the toe (Flg. 3). The bank became unstable due to a combination of geotechnical and hydrologic problems, namely a non-cohesive soil profile and excess water buildup within the slope base. Both issues were addressed by integrating a variety of solutions into the design. ### 3. Impact and Sustainability - Preserves trail for use by nearby communities - Designed for long-term soil stabilization - Blends in well with natural landscape - Uses multiple approaches to address drainage, soil stabilization, erosion control, and stream undercutting ### 4. Criteria and Constraints - Reasonable cost below the given budget of \$400,000 - Successful bank stabilization - Sustainable design - Aesthetically appealing - Restoration of public safety - Low negative ecological impact - Feasible construction accessibility - Feasible maintenance requirements ### 5. Alternative Solutions ### Trail Erosion - Trail Rerouting - Bridge/Boardwalk **Energy Dissipation** - Riprap - J-Hook ### **Bank Stabilization** - Log Crib Wall - **Gabion Basket** ### <u>Drainage</u> - Trench Drain - Tile Drain **Erosion Control** - Jute Netting - Geocells Figure 7 CAD Model of Crib Wall and Gabion Basket design Wall Dimensions (from high elevation to low): Log wall - 5x3x36 ft Gabion wall middle - 4x2x36 ft Base Gabion - 6x3x36 ft ### 7. Final Design planted on slopes (Fig. 5) ### **Erosion Control** Slope-stabilizing native grasses (bluestem, switchgrass) and ferns - 4,860 ft² of jute netting installed for erosion control along slopes - Benefits - Fast-growing plants stabilize disturbed soil Netting will biodegrade Figure 6 Selected Trench Drain to place along trail Bluestem (top left), switchgrass (top right), and ### Drainage Surface MIFAB T-300 Trench Drain installed along new trail (Fig. 6) stabilization method and city's New Trail Path Trail is rerouted 37.5 ft and 5 ft down from current centerline INDOT #8 Class A gravel Accommodates slope future trail expansion Increases pedestrian safety 10 ft wide and 130 ft long - Subsurface tile drains placed behind walls - Benefits Benefits - Avoids backfilling with water - Prevents flooding along trail ### **Energy Dissipation** - HEC-RAS stream dynamics (Flg. 4) - Max velocity: 5.76 ft/s - Revetment Riprap - Benefits - Easy construction - \circ Viable cost: \$35-\$50 yd³ - Fewer permitting requirements ### Slope Stabilization - Crib walls designed to meet safety factors in different categories: - Foundation bearing failure, sliding, rotation - Global analysis finds critical slip surface, local analysis determines size and locations of walls - Final wall properties (Fig. 7): - 2 Gabion Baskets → Near base - 1 Log Crib → Near trail - Benefits - Retains soil mass and prevents further collapse - Multiple small walls advantageous due to earth pressure theories - Gabions allow easy installation while crib gives aesthetic appeal ### 6. Site Analysis Figure 3 (left) LIDAR Elevation Map, 2018 Figure 4 (right) HEC-RAS model of site Acknowledgements: Danielle Winter TBIRD Design Services Co. Mariah Elinore Lehmkuhl Prof. Antonio Bobet ### 8. Schematic Figure 8 Overall design schematic ### 9. Permits - Section 404 Regional General Permit - Section 401 Water **Quality Certification** - Certificate of Approval: - Construction in a Floodway - Navigable Waters - Local Floodplain Ordinance ### 10. Budget Analysis | | Excavation Costs | \$5188 | |---|--------------------|--------| | • | Trench Drain Costs | \$2980 | | • | Tile Drain Costs | \$403 | | • | Gabion Wall Costs | \$1858 | | | Log Wall Costs | \$880 | | • | Riprap Costs | \$6000 | | • | Vegetation Costs | \$185 | | • | Jute Netting Costs | \$4450 | • Clearing Costs......\$19450 Trail Rerouting Costs..... \$1700 TOTAL: \$43,076 Sponsor: Seth Harden TNC **Technical Advisor:** Sara McMillan Instructors: Dr. Margaret Gitau George Athanasakes